Project cooperationUpdated on 18 July 2025
Digitalization of Drilling Machines for Smart and Efficient Operations within Lightweighting Applications
About
We are an R&D-focused company specialized in the design and manufacturing of drilling machines and equipment for geotechnical, mining, and exploration industries. Within the scope of the 1719 EUREKA Lightweighting Technologies Call, we aim to develop a digitalization project focused on transforming conventional drilling machines into smart, connected systems.
Our proposed project intends to integrate advanced IoT-based sensors, digital control units, machine learning algorithms, and cloud-based monitoring systems into our drilling equipment. The goal is to enable real-time monitoring of key performance parameters (e.g., drilling depth, torque, pressure, vibration), increase automation, and implement predictive maintenance strategies. Additionally, we plan to optimize structural and material components to reduce the overall weight of the machine without compromising durability and performance—fully aligning with lightweighting goals.
We are seeking international partners with complementary expertise in:
-
Sensor and control system integration,
-
Industrial IoT and cloud data platforms,
-
AI-based predictive maintenance,
-
Lightweight design and advanced materials,
-
Field testing and validation.
We are open to collaborating with universities, research institutions, and SMEs from participating countries. The project is expected to reach TRL 6–7 at completion, with strong potential for commercialization in both domestic and international markets.
Let’s innovate together for smarter and lighter drilling technologies.
Stage
- Early idea
Topic
- Data technologies | Data ecosystems for the realisation of circular value creation exploiting the full potential of digitalisation – e.g., harnessing existing, purpose-built platform solutions.
- Data technologies | Interoperability of CVC-relevant data ecosystems, quality assurance and traceability across systems
- Data technologies | (AI based) recognition systems (e.g. image recognition) to evaluate materials, components and products and determine the best use paths
- Data technologies | (AI based) process and system control technologies
- Data technologies | (AI based) Material and Product Design, Decomposition and Separation
- Data technologies | Assistance and Expert systems
- Data technologies | Simulation models and predictive analytics to assess the scalability of circular processes across industries
- Data technologies | Algorithm that shows the (positive) impact of a Circular Economy process or Circular Economy product
- Data technologies | Approaches to support SME fully exploit the value of existing CVC-related data
- Data technologies | Design of an adaptable Digital Product Pass:
- Enabling technologies | Manufacturing and machine learning, e.g., to increase the flexibility of industrial processes, modular approaches, reduce use of materials, quality assurance and certification of products)
- Enabling technologies | AI-driven diagnostic systems, e.g., for assessing the viability of reused, remanufactured, and recycled components
- Enabling technologies | Industry 4.0 technologies (IoT, big data analytics) for monitoring and managing circular value chains
- Enabling technologies | (Advanced/smart) Sensors, e.g., enabling materials, components and product flows measurement
- Enabling technologies | Robotic / handling - and assistance systems
- Enabling technologies | (Advanced) Materials and additive manufacturing
- Enabling technologies | Life cycle assessment / Product life cycle management – e.g., Digital Twin / Digital Product Passport
- Enabling technologies | Reverse Manufacturing (e.g. adaptive automation for high variance, sorting, sophisticated logistic systems)
- Enabling technologies | Tools and solutions addressing challenges emerging from product focused regulations (such as the ESPR)
- Enabling technologies | Network design of reverse supply chains
Organisation
Similar opportunities
Project cooperation
Reverse value chain for circular electronics management - supported by postal networks
- Early idea
- Already defined
- Consortium seeks Partners
- Enabling technologies | Network design of reverse supply chains
- Enabling technologies | (Advanced/smart) Sensors, e.g., enabling materials, components and product flows measurement
- Data technologies | Interoperability of CVC-relevant data ecosystems, quality assurance and traceability across systems
- Enabling technologies | Industry 4.0 technologies (IoT, big data analytics) for monitoring and managing circular value chains
- Enabling technologies | Life cycle assessment / Product life cycle management – e.g., Digital Twin / Digital Product Passport
- Enabling technologies | Reverse Manufacturing (e.g. adaptive automation for high variance, sorting, sophisticated logistic systems)
- Enabling technologies | AI-driven diagnostic systems, e.g., for assessing the viability of reused, remanufactured, and recycled components
- Data technologies | (AI based) recognition systems (e.g. image recognition) to evaluate materials, components and products and determine the best use paths
Koeun Lee
Circular economy and value chains consultant at Universal Postal Union (UPU)
London, United Kingdom
Project cooperation
Al and Circular Economy in Coating and Insulation
- Consortium seeks Partners
- Data technologies | Assistance and Expert systems
- Enabling technologies | Network design of reverse supply chains
- Data technologies | (AI based) process and system control technologies
- Data technologies | (AI based) Material and Product Design, Decomposition and Separation
- Enabling technologies | Life cycle assessment / Product life cycle management – e.g., Digital Twin / Digital Product Passport
- Data technologies | Simulation models and predictive analytics to assess the scalability of circular processes across industries
- Enabling technologies | Reverse Manufacturing (e.g. adaptive automation for high variance, sorting, sophisticated logistic systems)
- Data technologies | (AI based) recognition systems (e.g. image recognition) to evaluate materials, components and products and determine the best use paths
- Data technologies | Data ecosystems for the realisation of circular value creation exploiting the full potential of digitalisation – e.g., harnessing existing, purpose-built platform solutions.
Kaan AKSOY
Advanced Technologies and Sustainability R&D Department at BETEK BOYA VE KİMYA SANAYİ A.Ş
İSTANBUL, Türkiye
Project cooperation
Digital ecosystem for circular value creation
- Early idea
- Consortium seeks Partners
- Data technologies | Assistance and Expert systems
- Data technologies | Design of an adaptable Digital Product Pass:
- Data technologies | (AI based) process and system control technologies
- Data technologies | (AI based) Material and Product Design, Decomposition and Separation
- Data technologies | Approaches to support SME fully exploit the value of existing CVC-related data
- Enabling technologies | (Advanced/smart) Sensors, e.g., enabling materials, components and product flows measurement
- Data technologies | Interoperability of CVC-relevant data ecosystems, quality assurance and traceability across systems
- Enabling technologies | Industry 4.0 technologies (IoT, big data analytics) for monitoring and managing circular value chains
- Enabling technologies | Life cycle assessment / Product life cycle management – e.g., Digital Twin / Digital Product Passport
- Data technologies | Simulation models and predictive analytics to assess the scalability of circular processes across industries
- Enabling technologies | AI-driven diagnostic systems, e.g., for assessing the viability of reused, remanufactured, and recycled components
- Data technologies | Data ecosystems for the realisation of circular value creation exploiting the full potential of digitalisation – e.g., harnessing existing, purpose-built platform solutions.
- Enabling technologies | Manufacturing and machine learning, e.g., to increase the flexibility of industrial processes, modular approaches, reduce use of materials, quality assurance and certification of products)
Yoav Nahshon
Team Leader Materials Informatics at Fraunhofer IWM
Freiburg, Germany